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Abstract. This paper takes an overtly anticipatory stance to the understanding 
of animat learning and behavior. It analyses four major animal learning theories 
and attempts to identify the anticipatory and predictive elements inherent to 
them, and to provide a new unifying approach based on the predictive nature of 
those elements. Parallels are then drawn with Karl Popper’s “Logic of Scientific 
Discovery” in order to show how an animat controller may be built i nspired by 
those principles. The paper discusses the extent, and limitations, to this 
approach in an animat context and indicates how these principles were used to 
define the Dynamic Expectancy Model, and construct its implementation 
SRS/E. 

1    Introduction 

This paper takes a particular stance on animat behavior generation and learning. At 
the heart of this problem is how an animat should select actions to perform, under 
what conditions and to what purpose. It will argue that the generators of animat 
behavior have a strong anticipatory or predictive quality, and that learning, and our 
animal models of learning, should exploit the anticipatory and predictive properties 
inherent in the structures that define and cause it. The abilit y of entities, including 
living organisms and machines, to anticipate future events and be in a position to react 
to them in a timely manner has long been recognised as a key attribute of intelli gence 
For instance, the discussions between Charles Babbage and Italian scientists in 1840, 
where the meeting concluded that “… intelli gence would be measured by the capacity 
for anticipation” [19]. 

Recently, a growing number of researchers have identified and emphasised the 
importance of anticipation as the basis of models of animal learning and behavior. 
Stolzmann et al. [22] describe a classifier system model based on anticipatory 
principles, Tani and Nolfi [24] an Artificial Neural Network approach and Witkowski 
the Dynamic Expectancy Model (DEM, [29], [30], [31]), which places anticipation 
and prediction at the center of the learning and behavioral process. The anticipatory 
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stance imbues an animat with several important properties. First, the abilit y to 
determine possible future situations following on from the current one, thereby 
predicting those situations that might be advantageous (or harmful) in anticipation of 
them occurring. Second, to determine the possible outcome of actions made by the 
animat, leading directly to the abilit y to establish chains or plans of actions to satisfy 
some desired outcome. Third, the abilit y to rank the effectiveness of each action in its 
immediate context, independently of any particular goal or task specific reward or 
reinforcement (“corroboration” ). Forth, to determine when structural learning should 
take place, by detecting when unpredicted events occur. This can be seen as a process 
of discovery. 

Discovery alone is not suff icient. As science is twinned with engineering and 
technology to exploit the fruits of its discoveries, so animat learning is twinned with 
behavior generation. From time to time goals, activities required of the animat, will 
arise. By constructing a graph like structure from the predictions it has discovered 
during its li fespan and then determining an intersection of this graph with the goals 
and current circumstances, the Dynamic Expectancy Model may determine 
appropriate actions to satisfy those goals. Part of the structure of the DEM provides 
the animat with rules by which this discovery process proceeds. Part imbues the 
animat with suff icient behavior to set goals and to initiate and continue all these 
activities until l earned behavior may take over from the innate.  

Section two of this paper reviews four well -established theories of animal learning: 
behaviorist, classical conditioning, operant (or instrumental) conditioning and 
cognitive or ‘expectancy’ models. During the 20th century each attracted strong 
proponents and equally strong opponents, and each was the dominant theory for a 
time. Each is based on (typically large numbers of) detailed and fully repeatable 
experiments that largely served to confirm the convictions of those who already 
supported their theory of choice. However, none of these stances could be made to 
explain the full range of observable behaviors, and none was able to gain an overall 
dominance of the others. Yet the fact remains that each regime can be shown to be 
present in a single animal (though not all animal species will necessarily demonstrate 
every attribute). Each is made manifest in the animal according to the experimental 
procedures to which it is subjected. In this section examples will be drawn from both 
the animal and animat research domains.  

Section three analyses (selected) data from each school with the express purpose of 
generating a new, unifying, set of principles or “ rules” of prediction and propagation, 
specifically related to the anticipatory properties that can be extracted from the 
observations leading to the four models of learning and behavior. This section also 
reviews a number of computer models inspired by each of these the four stances.  

These rules are presented and discussed in section four. The purpose of this section 
is to consider the anticipatory role of prediction as a unifying factor between these 
approaches to learning, where previously differences may have been emphasized. 
This section introduces the primary contribution of this paper. In developing the 
unifying, anticipatory, framework, this paper does not suggest that any of these 
theories are in any sense incorrect, only that they each need to be viewed in the 
context of the whole animal, and of each other, to provide a satisfying explanation of 
the role of each part. The remainder of the paper is given over to a discussion of two 
significant consequences of adopting the anticipatory framework approach.  



Section five, then, considers some aspects of the formalized discovery process for 
scientific endeavor as proposed by the philosopher Karl Popper ([15]). These 
anticipatory principles seem interesting in this context as they define a continuing 
process of discovery and refinement. This allows an animat to progress through out its 
li fetime; incrementally developing is structures, and so match its behavior patterns to 
its environment. The analogy between Popper’s model of the scientific process and 
animal behavior can only be taken to a certain extent, and this extent will be discussed 
in this paper. 

Section six develops these arguments to show how they have influenced the 
development of the Dynamic Expectancy Model. Dynamic Expectancy Model 
animats may be seen as machines for devising hypotheses that make predictions about 
future events, conducting experiments to corroborate them and subsequently using the 
knowledge they have gained to perform useful behaviors. In this learning model the 
animat implements a low level version of a “scientific discovery process” . A critical 
feature is the creation and corroboration of self-testing experiments, each derived 
from simple “micro-hypotheses” , which are in turn created directly from observations 
in the environment. Each hypothesis will be viewed as describing and encapsulating a 
simple experiment. Each “micro-experiment” takes the form of an expectancy or 
prediction that is either fulfill ed, so corroborating the effectiveness of the hypothesis, 
or is not fulfill ed, denying the hypothesis. Section seven briefly describes the control 
architecture for SRS/E, an implementation of the Dynamic Expectancy Model. No 
specific results of using this model are presented in this paper, as they have been 
previously reported elsewhere ([29], [30], [31]). 

2    Prediction and Theories of Behavior 

We continue with the view that behavior generation (“action selection” ) is properly 
described by the direct or indirect interaction of sensed conditions, Sign-stimuli (S) 
and response, action or behavior (R) generators. This section will outline four major 
theoretical stances relating to animal behavior and learning, and will particularly 
focus on those issues relating to predictive abilit y, which will be considered in further 
detail l ater.  

2.1    The Behaviorist Approach  

It has been a long established and widely held truism that much of the behavior 
observed in natural animals can be described in terms of actions initiated by the 
current conditions in which the animal finds itself. This approach has a long tradition 
in the form of stimulus-response (S-R) behaviorism, and, although proposed over a 
century ago ([26]), continues to find proponents, for instance in the behavior based 
models of Maes [11], the reactive or situated models of Agre [1] and Bryson [8], and 
was a position vigorously upheld by Brooks [7] in his “ intelli gence without reason” 
arguments.  

All argue that the majority of observed and apparently intelli gent behavior may be 
ascribed to an innate, pre-programmed, stimulus response mechanism available to the 



individual. Innate intelli gence is not, however, defined by degree. Complex, 
essentially reactive, models have been developed to comprehensively describe and (so 
largely) explain the behavioral repertoire of several non-primate vertebrate species, 
including small mammals, birds and fish. Tyrrell [28] provides a useful summary of a 
variety of action selection mechanisms drawn from both natural and artificial 
examples. 

Behaviorist learning is considered to be “reinforcement” , or strengthening of the 
activating bond between stimulus and response. That is the occurrence of a desirable 
event concurrently (or immediately following) an application of the S-R pair enhances 
the likelihood that the pairing will be invoked again over other, alternative pairings, 
conversely, with a reduced likelihood for undesirable events. New pairings may be 
established by creating an S-R link between a stimulus and a response that were active 
concurrently with (or immediately preceding) the desired event. 

2.2    Classical Conditioning 

A second, deeply influential, approach to animal learning developed during the 
1920’s as a result of the work of Ivan Pavlov (1849-1936), now usually referred to as 
classical conditioning. The procedure is well known and highly repeatable. It is neatly 
encapsulated by one of the earliest descriptions provided by Pavlov. Dogs naturally 
salivate in response to the smell or taste of meat powder. Salivation is the 
unconditioned reflex (UR), instigated by the unconditioned stimulus (US), the meat 
powder. Normally the sound of a bell does not cause the animal to salivate. If the bell 
is sounded almost simultaneously with the presentation of meat powder over a 
number of trials, it is subsequently found that the sound of the bell alone will cause 
salivation. The sound has become a conditioned stimulus (CS). The phenomena is 
widespread, leading Bower and Hilgard ([6], p. 58) to comment “almost anything that 
moves, squirts or wiggles could be conditioned if a response from it can be reliably 
and repeatably evoked by a controllable unconditioned stimulus” .  

The conditioned response develops with a characteristic sigmoid curve with 
repeated CS/US pairings. Once established the CS/UR pairing will diminish if the 
CS/US pairing is not regularly maintained. We may note that the scope of the US may 
be manipulated over a number of trials to either be highly differentiated to a specific 
signal, or conversely gradually generalized to respond to a range of similar signals 
(for instance, a tone of particular frequency, versus a range of frequencies about a 
center). Higher-order conditioning ([3]; [6], p. 62) allows a second neutral CS’ (say, a 
light) to be conditioned to an existing CS (the bell ), using the standard procedure. CS’ 
then elicits the CR. 

2.3    Operant Conditioning 

An radically alternative view of learning was proposed by B.F. (Burrhus Frederic) 
Skinner (1904-1990), that of instrumental or operant conditioning.  In this model, 
responses are not “elicited” by impinging sensory conditions, but “emitted” by the 
animal in anticipation of a reward outcome. Reinforcement strengthening is therefore 



considered to be between response (R) and rewarding outcome (O), the R-O model, 
not between sensation and action, as in the S-R model.  

The approach is ill ustrated by reference to an experimental apparatus developed by 
Skinner to test the paradigm, now universally referred to as the “Skinner box” .  In a 
typical Skinner box the subject animal (typically a rat) operates a lever to obtain a 
reward, say a small food pellet. Typically the subject must be prepared by the 
experimenter to associate operating the lever with the food reward. However, once the 
subject is conditioned in this manner the apparatus may be used to establish various 
regimes to investigate effects such as stimulus differentiation, experimental 
extinction, the effects of adverse stimuli (“punishment schedules” ) and the effects of 
different schedules of reinforcement (such as varying the frequency of reward). As the 
apparatus may be set up to automatically record the activities of the subject animal 
(lever pressing), long and/or complicated schedules are easily established.  

Operant conditioning has found application in behavior “shaping” techniques, 
where an experimenter wishes to directly manipulate the overt behavioral activities of 
a subject, animal or human. In the simplest case the experimenter waits for the subject 
to emit the desired behavior, and immediately afterwards presents a reward (before a 
rat may be used in a Skinner box it must be prepared in this way). Importantly, it is to 
be noted that the R-O activity may be easily manipulated so as to occur only in the 
presence of a specific stimulus, which may in turn be differentiated or generalized by 
careful presentation of reward in the required circumstances.  

This has lead to the assertion that operant conditioning is properly described by as 
three-part association, S-R-O. It is also interesting to note that the stimulus itself now 
appears to act as a conditioned reinforcer, where it had no inherent reinforcing 
properties before. In turn, then, a new response in the context of another stimulus (Sy) 
and response (Ry) may be conditioned to the existing triple (Sx-Rx-O): 

Sy-Ry-Sx-Rx-O  

Chains of considerable length and complexity have been generated in this way, and 
have been used, for instance, in the film industry to prepare performing animals. It is, 
of course, a given that the rewarding outcome is itself a sensory event with direct 
(innate) association with some condition the subject wants (or in the case of aversive 
condition, does not want). If the subject animal is not, for instance, hungry when 
offered food, the connection will not be manifest, and might not be formed. It is also 
the case that an apparently non-reinforcing sensory condition can attain reinforcing 
properties if presented in conjunction with an innately reinforcing (positive or 
negative) one, the secondary or derived reinforcement effect ([6], p. 184). Derived 
reinforcers will also condition responses unrelated to the original one.  

2.4    The “ Cognitive” Model: 

In the final model to be considered, derived from Tolman’s [27] notion of a Sign-
Gestalt Expectancy, that is a three part “basic cognitive unit” of the form S1-R-S2, in 
which the occurrence of the stimulus S1 in conjunction with the activity R, leads to 
the expectation or prediction of the outcome S2 (which may or may not be 
“ rewarding”). This is largely equivalent to Catania’s [9] description of the fully 



discriminated operant connection as a three-part contingency of “stimulus – response 
– consequence”, but with the essential difference that it is the identity of the outcome 
that is to be recorded, rather than just a measure of the desirabilit y or quality of the 
connection as assumed in operant or S-R approaches. Tolman’s means-ends approach 
inspired, and remains one of the central techniques of, Artificial Intelli gence problem 
solving and planning techniques. 

3    Interpreting Behavior as Prediction 

It is clear that the standard S-R formulation makes no explicit prediction as to the 
outcome of performing the action part. But there is nevertheless an implicit prediction 
that responding in this way will place the animal in a “better” situation than the 
current one, and that the animal will be driven forward to a situation where further 
behaviors are triggered. Maes’ model [11] makes this explicit. The S-R model is an 
effective one, and explains much about innate behavior generation. However the 
implicit prediction is one shared with the species as a whole (actually with the 
forebears of the individual).  

Modern reinforcement learning techniques ([23], for a recent review) have 
revitalized our view of how this implicit prediction should be viewed. They provide 
robust and analytically tractable ways to guarantee the prioritization of multiple S-R 
connections to achieve optimized performance. Such policy maps, while finding many 
important applications, tend to be “over stable” with respect to sources of reward. In 
contrast, when reward states change, animals respond quickly to these changing 
needs.   

The anticipatory attributes of the classical conditioning paradigm have long been 
noted, not least because it is almost impossible to establish the effect when the CS 
occurs after the US. Indeed for best results the CS must be presented (a short time) 
before the US, implying that there is a predictive effect. It remains an open question 
as to whether classical conditioning should be interpreted as a general predictive 
principle, or if it is just a highly specific phenomenon only associated with autonomic 
reflexes. This paper tends on the side of generality. Classical conditioning has been 
extensively and accurately modeled by computer simulation ([4], for review). Barto 
and Sutton [5] comment in particular on the anticipatory nature of the process. 

Even though they arise from profoundly different points of view, i.e. “behaviorist” 
vs. “cognitivist” , there are many similarities between the operant conditioning and 
“cognitive” approaches. The principal issue that separates them is the role of overt 
reward as a driver for learning. Is reward necessary for learning, as would be 
suggested by the operant conditioning approach? Clearly not, as indicated by the 
latent learning procedure ([25] for a review of the animal lit erature, and, e.g., [29], for 
a simulation using the DEM), in which rats (for instance) may be demonstrated to 
learn mazes in the absence of any externally applied reward. It is not until some 
rewarding condition is introduced into the maze that the same rats are observed to act 
in an obviously purposive manner within the maze. This, and similar observations, 
would suggest that learning and the motivation to utili ze what is learnt are generally 
separate. It may, of course, be the case that an animal is partially or highly pre-



disposed to learn combinations that are, have been, or might be “rewarding” 
(Witkowski, [29] models such an effect using the DEM).  

Saksida et al. [18] present a computer model of operant conditioning for robot 
behavior shaping tasks. The Associative Control Process (ACP) model ([2]) develops 
the two-factor theorem of Mowrer ([14]). The ACP model reproduces a variety of 
animal learning results from both classical and operant conditioning. Schmajuk [20] 
presents a two-part model combining both classical and operant conditioning modules 
emulating escape and avoidance learning behavior.  

Several anticipatory and predictive three-part models have recently appeared in the 
Animat literature.  Stoltzmann et al. [22] describe an Anticipatory Classifier System 
(ACS), Witkowski ([29], [30], [31]) describes the Dynamic Expectancy Model 
(DEM). Developed independently, both are overtly predictive three-part systems, with 
a number of significant parallels and differences. 

4    The Anticipatory Framework  

This section proposes a framework of the three fundamental kinds of connection 
between stimulus Signs and Action response, and five basic rules relating their 
behavioral and predictive activities. The purpose of this section is to show that each of 
the four apparently disparate learning theories introduced in the previous sections can 
be unified from a single anticipatory or predictive viewpoint, and so how they might 
each serve a purpose within the individual animat.  

Henceforth, the term sign-stimulus or simply Sign will be used to refer to an 
identifiably distinct conjunction of sensory conditions, all of which must be 
individually present for the Sign as a whole to be deemed active. A Sign that is 
predicted is referred to as sub-active, a status distinct from full activation as there are 
circumstances where anticipated activations must be treated differently from actual 
activation. The component parts of a Sign may be sensitive to a broad or narrow range 
of phenomena, and the Sign is active whenever each component is detecting 
anywhere in its range. The range of these components may be altered marginally at 
any given time. In principle, a Sign may detect external phenomena (as from a sensor 
or perceptual system), the activity status of an Action or a variety of other, internal, 
conditions. The total set of Signs currently known to the animat will be indicated by 
the calli graphic capital letter 

� �
, an individual Sign by the lower case letter � �  and the 

active sub-set of Signs by 
������

. 
The term Action (used from now on in preference to the pejorative, but largely 

synonymous term “ response”) will refer to recognizable units of activity performed 
by the animat, taken from the set of actions available to the animat. The animat will 
have a fixed repertoire of such action patterns (which may be simple or complex). 
Any action being currently expressed (performed) is deemed active. Actions may be 
overt, causing physical change to the animat’s effector system or covert, specifically 
changing the status of a Sign’s valence level or forming a connection between other 
Signs and Actions. The total set of Actions available to the animat will be indicated 
by the letter � � , and individual Actions by � � , the active sub-set of Actions by � �� � . 



The generally neutral term valence (after Tolman [27]) will be adopted to indicate 
that a Sign has goal li ke properties, in that it may give the appearance of driving or 
motivating the animat to activity. In this framework any Sign may have valence, 
which is separate property from activation or sub-activation. Like sub-activation it 
may be propagated to other Signs; but does not, in itself, give rise to overt behavior. It 
is unclear how motivation is derived in the brain, although Mill er ([13], ch. 18) 
describes the dramatic motivational effect (in a Skinner box apparatus) of direct 
electrical stimulation of the anteroventral hypothalamus, in which the subject animal 
operated the (stimulation causing) lever at about 2000 presses/hour.  

We will assume that the animat has memory, conventionally, of past occurrences, 
but also a temporary ordered memory of predicted future occurrences. The extent of 
this memory (in terms of what may be recalled and the time period over which it is 
defined) will li mit what may be learned and predicted. First we recognize three types 
of connection: 

1) SA-Connection: Signs can be connected to Actions, either innately or as a 
consequence of learning.  

2) SS-Connection: Signs may predict other Signs, where a predictive link has 
been established. 

3) SAS-Connection: Signs may be attached to an Action and a second Sign, as 
prediction. 

Next consider the following five “rules of propagation” , which define (a) when an 
Action becomes a candidate for activation, (b) when a prediction will be made, (c) 
when a Sign will become sub-activated, and (d) when a Sign will become valenced: 

1. When the Sign in an SA-Connection is active or sub-active the associated 
action becomes a candidate for activation (expression). 

2. When the stimulus-sign in an SS-Connection is active or sub-active the 
consequent Sign becomes sub-active. Where the prediction implies a time 
delay, a future “memory” may be made of the predicted activation.  

3. Any Sign that predicts another Sign (either SS or SAS) that has valence, 
itself becomes immediately valenced. 

4. An SAS-Connection where the antecedent Sign and Action are both active is 
itself active and predicts its Consequent Sign, taking into account any delay. 

5. The Action in an SAS-Connection where the antecedent Sign is both active 
and has valence (because its consequent Sign does, by rule 3) becomes a 
candidate for expression.  

Rule 1: This is the standard behaviorist Stimulus-Response model. It may be 
applied to SA connections both in the sense of an Unconditioned Reflex in the 
classical conditioning domain, and in the sense of an action pattern releaser/trigger for 
a more complex behavior module, for instance using a “winner takes all strategy” . As 
many Signs may be active at any one time (they detect what they detect and are not 
assumed to be mutually exclusive), it will be assumed (in the absence of data to the 
contrary) that several UR may be initiated at once.  

As the action patterns become more complex the activation strategy becomes more 
critical. It is largely assumed that such activities are mutually exclusive (even though 
several Signs may be active), such that the activated behavior patterns will be in a 



priority order. The description of this process as a simple S-R activity belies the 
potential, and typical, complexity of the behaviors than can be initiated. Bryson’s [8] 
EDMUND model, for instance, extends Rosenblatt and Payton’s [17] feed-forward 
network model with elements of parallel activation and hierarchical control structures 
in order to explain the range of phenomena noted in nature.  

Rule 2: Describes a simple predictive step, the occurrence of one Sign leading to 
the expectation or anticipation that a second will follow within a specified period. 
This rule accounts for the observations of classical (and higher order) conditioning 
phenomena  (section 2.2) when in conjunction with rule one. Note that rule one only 
expresses the expression criteria in conditional terms, that sub-activation (the result of 
the predictive connection) may (or may not) activate the SA-connection. Despite an 
assumption of equivalence of associability (i.e. that any two Signs may act as either 
predictor or predictee, [6], p. 67), it is clear that not all stimuli are equally amenable to 
act as the CS in conditioning experiments. Shettleworth [21] found (in the case of 
golden hamsters) that it was easy to associate certain UR behaviors, such as 
“digging” , “scrabbling” and rising up on the hind legs with a food outcome, and 
almost impossible to condition others, such as washing or scratching. Shettleworth 
also noted that the behaviors that could be conditioned were in any case those that the 
animal tended to emit ordinarily in anticipation of feeding, where the ones that could 
not be conditioned were not.  

By rule 2, sub-activation is defined as self-propagating; sub-activation of the 
antecedent will i n turn sub-activate the consequent. This defines the mechanism for 
longer chains, as would be the case in, for example, higher order conditioning. In 
some examples of second order conditioning schedules (e.g. Rizley and Rescorla, 
cited in [6]) it is possible to extinguish the initial (directly predicting) CS, without 
affecting the second-order CS. This appears consistent with the notion of propagating 
sub-activation, rather that full activation, which would indeed sever the chain. 

A question remains as to the degree to which sub-activation should propagate in 
this manner. Given the reported diff iculties of sustaining higher order conditioning 
schedules, it would seem plausible to suggest that propagated sub-activation in this 
sense will t ypically be a highly attenuating process in most instances. By treating sub-
activation also as an anticipatory mechanism (in the Shettleworth sense), that is, 
priming the animat for other activities, it would seem equally reasonable that the 
consequences of this predictive effect should remain localized. Without this 
restriction too many Signs would become sensitized and the effect would be diluted. 

Rule 3: This rule describes the reverse effect of propagating valence (back) across 
a predictive link, from predictee to predictor. We may take the derived reinforcer as 
an exemplar of this process. Some Signs clearly have innate connection to the source 
of valence. That is, their occurrence predicts or is associated with a change in the state 
of the valence source. For a hungry dog, it seems that the taste or smell of meat has 
just such an effect. This is apparently innate and does not need to be established. By 
rule 3, the derived reinforcer, otherwise neutral, gains its valence by predicting that 
smell or taste. Clearly, the prediction link persists after the conditions that lead to its 
formation are lost.  

Rule 3 applies to both SS and SAS type connections, as they are both overtly 
predictive forms. However they have different properties and should therefore 



propagate differently. The SAS connection, like a conventional problem-solving 
operator, implies action by the animat to move across the link. In this form the animat 
actively initiates the transitions. It is assumed that valence will propagate well across 
these links, capable of forming long chains of outcome predictions (section 2.3). 
Applying this rule rigorously, we note, however, that the propagation takes the form 
of a graph between Signs linked by predictions. The sequence of actions it actually 
generates, on the other hand, will i ndeed appear as a linear sequence. 

In the SS form the animat must essentially wait and see if the transition occurs. 
While useful for some schedules (“wait for the bell ” ), to rely on long chains of such 
connections would lead to effective behavioral paralysis. It is therefore assumed that 
valence, as with prediction, propagates poorly across SS connections.  

Rule 4: Defines the conditions under which an SAS connection makes its 
prediction. Note that the prediction is made (and any sub-activations instigated) 
regardless of how the action was initiated.  

Rule 5: Defines the conditions under which the action in an SAS connection itself 
becomes a candidate for activation. When an antecedent Sign is both active and has 
valence, it is at a point of intersection in the valence graph forming a plausible “chain 
of actions” to a source of valence (acting as a goal) from the animat’s current 
situation. The Dynamic Expectancy Model takes into account the total (estimated) 
effort between each Sign and sources of valence by combining the effort that must be 
expended at each step with the strength of the prediction across the connection. 
Consequently the model defers action choice until the graph of Sign connections is 
completely evaluated, so as to be sure of selecting the action at the start of the most 
advantageous chain. 

5    The Logic of Discovery 

This section discusses these aspects of animal learning as a process of discovery, with 
parallels to the view that science is also an on-going discovery process. As part of the 
arguments leading to his development of the central thesis in his classic and seminal 
work into the nature of the scientific process, his “Logic of Scientific Discovery” , the 
eminent Austrian born philosopher Sir Karl Popper (1902-1994) identified many 
essential properties of the hypothesis and its role in a self-sustaining discovery 
process encapsulated in a set of “methodological rules” [15]. In this view of the 
discovery process “scientific truth” is not determined by any notion of absolute 
correctness but by the creation of hypotheses from theories, which are to be tested 
against the phenomena they predict. This is a form of modus tollens, where theories 
from which hypotheses were properly derived are discarded when the hypotheses are 
falsified by experiment. If t, some theory, implies p, some proposition (say a logically 
derived hypothesis), then the falsifying entailment: 

  ((t→p) & ¬p) |=  ¬t  



requires us to reject t if we find p false. In turn experiments are devised to 
determine the validity of the hypothesis. Similarly, an experiment, e, that conclusively 
tests some proposition, p, and finds it false then the theory itself is unsupported.  

 ((p→e) & ¬e) |= ¬p  

The “Logic of Scientific Discovery” contains many insightful observations about 
the nature of the discovery process. A number of these observations, pertinent to 
expectancy theory and particularly relating to the nature of the hypothesis and 
experiments are considered now. Hypotheses that have more general applicabilit y, 
those giving rise to a smaller range of derived “statements” and so have a higher 
“empirical content” , have decreasing opportunity to escape falsification ([15], p. 86). 
It is therefore incumbent on the discovery process to propose the simplest theories and 
hypotheses that are testable and so falsifiable - though simplicity itself is not a 
substitute for falsifiabilit y. Selection of the fittest systems of hypotheses should be as 
a result of the “fiercest struggle for survival” ([15], p. 42) between competing 
theories. Even if inadequate, such systems of hypotheses should persist until falsified 
or replaced by one better able to be tested and found more fit. Theories that are not 
testable (so are “undecidable” or “meta-physical” ) are to be considered non-scientific 
- though not necessarily uninteresting ([12], ch. 3).  

Experiments must be properly derived from, and so test, hypotheses. Experiments 
must therefore encapsulate a complete description of the conditions under which the 
phenomena is to be tested, so as to be repeatable and reproducible. Any conditions not 
included in the experimental procedure being considered irrelevant. In Popper’s view 
a hypothesis may at best be corroborated, or otherwise falsified, and consequently the 
hypothesis and therefore the theory from which it was derived should be refined or 
refuted.  

In practice Popper recognizes that there may be exceptions to the strict application 
of this approach, such as when the hypothesis fails due to incomplete specification, or 
where observations have reached the limits of available experimental technique. 
Experiments are repeated so that we may “convince ourselves that we are not dealing 
with a mere isolated coincidence” ([15], p. 45). Popper refers to such coincidences as 
occult occurrences. Continued testing only ever serves to corroborate hypotheses and 
so support (or deny) a theory, a theory being highly corroborated when it has 
repeatedly resisted attempts to overturn it. In Popper’s model of the scientific method 
hypotheses are deduced from theories, the Hypothetico-Deductive approach. Testing 
of hypotheses is a continuous process, the “scientific game” one without end. We may 
decide to suspend testing a hypothesis temporarily, but “he who decides ... that 
scientific statements do not call for any further test, and that can be regarded as 
finally verified, retires from the game” ([15], p. 53). 

While Popper decisively rejects induction (“ theory from examples” ) as a strategy 
for formulating or for “verifying” theories, he provides scant clue in these early 
writings as to how he considers theories themselves are to be created. Later authors 
active in the field of the philosophy of science have extended this model, and 
provided alternative views, of the scientific process (Kuhn [10], for example).  



6    The DEM Postulates 

The Dynamic Expectancy Model defines an animat controller based on the principles 
of the anticipatory approach described. This section adds operational detail to those 
principles as a step to the computer program implementation of the model (SRS/E) in 
the form of a number of “postulates” . Clearly it will not be appropriate to suggest that 
the principles embodied in “The Logic of Scientific Discovery” can be wholly or 
directly incorporated into an animat controller, where the aim is to provide 
engineering analogues of animal learning and behavior. It would, for instance, be idle 
to suggest that there is any plausible evidence that rats, or monkeys, or any other non-
human species can formulate and represent explicit theories of their world and derive 
testable hypotheses from it. On the other hand, there is clear evidence for a scale of 
phylogenetic development ([16]) from simple to increasingly complex creatures, 
across which it is possible to chart the introduction of increasingly complex 
behavioral and learning traits. We might then suppose that each builds (in some 
general sense) on those that went before. In this sense we may assume that these 
abiliti es are precursors to our own, and worthy of consideration in that light.  

So where Popper describes the Logic of Scientific Discovery as a Hypothetico-
Deductive approach, the Dynamic Expectancy Model adopts a primarily Hypothetico-
Corroborative stance. That is, having formed a predictive hypothesis, typically from 
one or more exemplar situations, the primary role of the DEM mechanism is to 
corroborate its usefulness and apply that knowledge to the benefit of the animat. This 
shift of emphasis is significant, predictions are here primarily a property of 
hypotheses, less so a consequence of the deductive properties of a theory. This shift of 
emphasis, though, seems in keeping with the idea of the animat as a pre-cursor to a 
full , human, system of scientific discovery. No mechanism for the construction of 
more complex models is incorporated into the Dynamic Expectancy Model, the 
“background theory” implicit in the animat is inherent to its ethogram (the total 
description of an animal or animat’s innate capabiliti es, to perceive, act and learn). 

In order to clearly distinguish predictive hypotheses in the Dynamic Expectancy 
Model from those proposed by Popper, they will be referred to as µ-hypotheses 
(spoken “micro-hypotheses”). These are encapsulations of the two predictive, and so 
capable of corroboration “by experiment” , forms (SS and SAS). Applications of these 
forms, where they make their prediction, will be considered as a form of experiment, 
or µ-experiments (“micro-experiments” ), to distinguish them. The construction and 
corroboration of low-level observation based µ-hypotheses would appear a useful pre-
cursor to the independent development of any systematic theoretical model, whose 
structure is not wholly or primarily dependent on an originator (the individual or 
process responsible for the creation of the animat and its ethogram). 

6.1    The Hypothesis Postulates 

Definition H0: The µ-hypothesis. Each of the forms SS and SAS shall be considered 
as µ-hypotheses, as each type is capable of forming a prediction and so is inherently 
“ testable”. Call the set of all µ-hypotheses 

� �
, with � �  indicating an individual µ-



hypothesis. A µ-hypothesis is composed of Signs ( � � ) and Actions ( � � ) from the 
respective Sign ( � � ) and Action ( � � ) lists. So: 

SS: � � SS:  
������   0 �  t±τ   

��� ���� �  
SAS:   � � SRS:  � �  ∧ ������   0 �  t±τ   

��� ���� �  
Each records a possible transition between two conditions that may be sensed by 

the animat (signs ������  and ��� ���� � ). In an SAS connection ������  must be concurrent (∧) with an 
action � � . The double arrow ( � ) now jointly indicates the left to right prediction (rules 
2 and 4), of the consequent, and the instantaneous (rule 3) reverse transfer of valence. 

Postulate H1: µ-Experimentation. µ-Experimentation is the mechanism by which 
predictive self-testabilit y is conducted. µ-Experimentation is a two-part process. (1) 
making a prediction based on matching a µ-hypothesis’  antecedent conditions to 
current activations, and (2) comparing those predictions, a posteriori, with the actual 
activations that hold true at the time stipulated by the prediction.  

Postulate H2: Prediction. Prediction (implementing rules 2 and 4) records the 
predicted sign whenever a µ-hypothesis is active. Denoting the total set of active 
predictions made by the animat and currently awaiting confirmation with the letter � � , 
with 	 	  indicating an individual prediction. So: 

SS:     if ( ��
 �����
 ���  ∈ �
��
� ) then ��
 	��
 	 +t ← ��� ���� �  
SAS:  if ( ��
 �����
 ���  ∈ �
��
�  & ��
 ���
 �   ∈ ������ ) then ��
 	��
 	 +t ← ��� ���� �  

This memory is a property of the predicting µ-hypothesis, not of the sign predicted, 
as one Sign may be independently predicted by several µ-hypotheses.  

In the SRS/E implementation, prediction memories are implemented as shift 
register like traces, the prediction being placed into the register +t units ahead. The 
register moves one step backwards towards “ the current time” with each execution 
cycle (so ��
 	��
 	 0 indicates a prediction due at the current time for some hypothesis � � ). 
This limits the time horizon of the system, a different implementation might record 
individually time stamped predictions, and so have an arbitrary time horizon. 

Postulate H3: Corr oboration. To match these recorded predictions against 
immediate sensations at the time the predictions fall due. If a µ-experiment is to be 
valid it must encapsulate all of the pre-conditions under which it will be judged. The 
antecedent components in a SS or SAS connection serve exactly as the definition of 
those pre-conditions. The quality of each µ-hypothesis is determined solely by its 
abilit y to accurately predict its consequent sign. This record of the animat’s abilit y is 
encoded in the corroboration measure (Cm).  

One might suppose that the corroboration measure is properly defined as the 
simple ratio of the total number of predictions made by the µ-hypothesis to the 
number of correct predictions made. This is equivalent to the probabilit y (Pm), thus: 

 Pm = p( ��� ���� �  |t ( ������  ∧ � � ))  (SAS form) 

The use of the “t” symbol here acts as a reminder of the temporal relationship that 
exists between the predicted outcome and context. However, this measure is highly 
sensitive to sample size, if a µ-hypothesis were to change from being valid to invalid 
(the world changed) a long established µ-hypothesis would react slowly. 



In practice, a confidence measure related to probabilit y is adopted. Each successful 
prediction reinforces confidence in a µ-hypothesis. Conversely every unsuccessful 
prediction extinguishes confidence in that µ-hypothesis. The contributions of past 
predictions are discounted as further predictions are made and µ-hypotheses remain 
largely insensitive to their age and experience. The corroboration measure (Cm) is 
increased by the quantity: 

 ∆Cm = α(1 - Cm)  if 
��� ���� � 0 ∈ ������  

following each instance of a successful prediction of an active Sign, and  

 ∆Cm = - β(Cm) if 
��� ���� � 0 ∉ ������  

following an unsuccessful prediction. Cm is updated following the widely used 
delta rule form. Under constant conditions these relationships give rise to the widely 
observed “negatively accelerating” form of the learning curve. The two proper 
fractions the reinforcement rate (α) and the extinction rate (β) respectively define a 
“ learning rate” for successful and unsuccessful prediction situations. They control the 
rate at which the influence of past predictions will be discounted. The Cm value of a µ-
hypothesis that makes persistently successful predictions tends to 1.0, the Cm value of 
a µ-hypothesis that persistently makes unsuccessful predictions tends to 0.0. The 
positive reinforcement rate need not be equal to the negative extinction rate.  

In the Popperian sense, DEM µ-hypotheses are not properly derived from explicit 
theories, so they cannot be rejected on the basis of modus tollens (section 5), but 
instead are created from examples and must “compete” to attain higher confidence 
measures, and so be incorporated into goal-directed valence sequences.  

Postulate H4: Learning by Creation. µ-Hypotheses may, of course, be innate to 
the animat, part of the ethogram definition. The prediction and corroboration 
mechanism will effectively tune them to the animat’s actual circumstances. This both 
pre-disposes the animat to useful and (presumably) appropriate behavior patterns, and 
allows innate and learned behaviors to be integrated.  However, to be a fully-fledged 
learning entity, the model must define a “Learning by Creation” method by which the 
animat extends the set of µ-hypotheses. This learning proceeds in two parts, (1) 
detecting circumstances where a new µ-hypothesis is required, and (2) the actions 
required to construct the double (SS) or triple (SAS) connection.  

µ-Hypotheses exist to predict future occurrences of Signs; it is therefore reasonable 
to suppose that new µ-hypotheses should be created under two specific circumstances. 
Potentially, every sign should have at least one µ-hypothesis capable of predicting it, 
and ideally the Sign would be correctly predicted for every occurrence. Novel signs 
(ones not previously recognized by the system) can appear in the system as a result of 
the differentiation process (H5, below) where new, distinct Signs are formulated - 
postulate H4-1, novel event. In the second creation circumstance, known signs are 
detected without a corresponding prediction, postulate H4-2, unexpected event. A 
novel (or unexpected) Sign is recognized within the SRS/E system by detecting the 
condition:  
� �   ∈ ������  & � �  ∉ � � 0, that is, the Sign � �   is active, but was not predicted to be so at the 

current time. 



In either case a new µ-hypothesis may be created. The consequence Sign ( ��� ���� � ) for 
this new µ-hypothesis will be the novel or unexpected Sign. The context and action 
drawn from the set of recent Signs (and Actions for an SAS connection) recorded by 
the system in the memories associated with individual Signs and Actions (modeled in 
SRS/E as the shift registers like “traces”). The new µ-hypothesis may then be 
constructed by incorporated the remembered components into the antecedent and 
shifting the predicted time by an amount equivalent to the depth in the memory trace 
of the antecedent item(s). 

Postulate H5: Refinement. Refinement is the mechanism by which the animat 
may differentiate or generalize its existing set of µ-hypotheses. Differentiation adds 
extra conditions to the context of an existing µ-hypothesis, reducing the range of 
circumstances under which that µ-hypothesis will be applicable. Generalization 
removes or relaxes existing conditions to the context, increasing the range of 
circumstances. Differentiation may be appropriate to enhance µ-hypotheses that have 
stabili zed, or stagnated, at some intermediate corroborative measure value. µ-
Hypotheses should not be subject to differentiation until they have reached an 
appropriate level of testing (their “maturity” , or extent of corroboration). Maturity is a 
measure of the degree of corroboration of a µ-hypothesis. It is otherwise independent 
of the age of a µ-hypothesis. It is expected that the refinement process will create new, 
separate µ-hypotheses that are derived from the existing ones. Both old and new µ-
hypotheses are retained and may then “compete” to determine which offers the best 
predictive abilit y. In the specific implementation SRS/E, creation (H4) is heavily 
biased to formulating over generalized µ-hypotheses, so differentiation is the primary 
refinement method. Anticipatory Classifier Systems (ACS), due to their design, tend 
to emphasize generalization [22] as the primary refinement mechanism. 

Postulate H6: Forgetting. Forgetting is the mechanism by which the animat may 
discard µ-hypotheses found ineffective from the set of µ-hypotheses held, or when the 
system needs to recover resources. A µ-hypothesis might be deleted when it can be 
determined that it makes no significant contribution to the abiliti es of the animat. This 
point can be diff icult to ascertain. Evidence from animal learning studies indicates 
that learned behaviors can be retained even after considerable periods of extinction. 
Experimental evidence drawn from the implementation of the model described later 
will point to the value of not prematurely deleting µ-hypothesis, even though their 
corroborative measures fall to very low levels [31]. Where a Sign is predicted by 
many µ-hypotheses there may be good cause to remove the least effective. It is 
presumed that the last remaining µ-hypothesis relating to a specific consequent Sign 
will not be removed, on the basis that some predictive abilit y, however poor, is better 
than none at all . As no record is retained of the forgotten µ-hypothesis, a new µ-
hypothesis created later may be the same as one previously removed (by H4-2, 
unexpected event). 

6.2    The Valence Postulates 

Definition G0: Goals. A goal establishes a valence condition within the animat 
causing the animat to select behaviors appropriate to the achievement or “satisfaction” 



of that goal. Goals (denoted by the letters 
� �

/ � � ) are a special condition of a Sign; goals 
are therefore always drawn from the set of available Signs. 

Postulate G1: Goal Valence. From time to time the animat may assert any of the 
Signs available as a goal. Any Sign asserted to act as a goal in this way is termed as 
having valence (or be valenced). None, one or many Signs may be valenced at any 
one time.  

Postulate G2: Goal Priority. Each valenced goal is assigned a positive, non-zero 
priority. This priority value indicates the relative importance to the animat of 
achieving this particular goal, in the prevaili ng context of other behaviors and goals. 
Goal priority is determined within the innate behavioral component of the ethogram. 
In the current SRS/E implementation only one goal is pursued at any time - the top-
goal, the goal with the highest priority. 

Postulate G3: Valenced Behavior. Whenever a goal is valenced, SRS/E will , by 
rule 4, propagate valence across existing µ-hypotheses to establish a graph of 
valenced connections within the system. In the SRS/E implementation each SRS 
connection will i mpose a cost effort estimate, Ce, proportional to the effort of 
performing the action and inversely to the current Cm value for the link: 

Ce ← (action_cost( � � ) / Cm) 

This effort accumulates across the graph, so that each antecedent Sign in the 
network defines the beginning of a path or chain (of actions) that represents the “best 
estimate” for the animat forward to the top-goal. This graph is referred to as the 
Dynamic Policy Map (DPM), as it defines a both preference ranking for activation for 
every Sign reached by rule 3 and indicates which of the actions associated by µ-
hypotheses with the Sign should be activated. The DPM is recalculated frequently as 
goal priorities and confidence measures change due to corroboration, and as µ-
hypotheses are added and removed from the system. In the SS connection case, it is 
convenient to consider a “dummy” action. By assigning it a high (notional) 
action_cost, propagation across these links is disadvantaged. 

Postulate G4: Valenced Action Selection. When a DPM exists the system will 
apply rule 5 to activate a µ-hypothesis and so select an action. SRS/E selects the µ-
hypotheses with the lowest overall cost estimate to the top-goal where several nodes 
compete for activation under rule 5.   

Postulate G5: Goal Satisfaction. A valenced goal is deemed “satisfied” once the 
conditions defined by the goal are encountered, when the sign that defines the goal 
becomes activate. The priority of a satisfied goal is reduced to zero and it ceases to be 
a source of valence. Where goal-seeking behavior is to take the form of sustained 
maintenance of a goal state, the goal selection process must maintain the valence of 
the goal Sign following each satisfaction event. 

Postulate G6: Goal Extinction. In a situation where all possible paths to a goal 
are unavailable, continued attempts to satisfy that goal will eventually become a threat 
to the continued survival of the animat, by blocking out other behaviors and 
needlessly consuming resources. Such a goal must be forcibly abandoned. This is the 
goal extinction point. Witkowski [31] has modeled goal extinction using the DEM, 
arguing that is it substantially different from a simple reversal of the development of 
corroboration and from extinction in classical conditioning. 



6.3    The Behavior Postulates 

Definition B0: Behaviors. Behaviors (indicated by the letter 
� �

) are non-learned 
activities inherent within the system. Behaviors are explicitly Stimulus-Response 
(SA) connections and are activated according to the tenets of rule 1. They are defined 
prior to parturition as part of the ethogram. There is no limit to the complexity (or 
simplicity) of innate behavior. An animat might be solely dependent on innate 
behaviors, with no learning component. 

Postulate B1: Behavior Priority. Each behavior within the animat is assigned a 
priority relative to all the other behaviors. This priority is defined by the ethogram. 
The action associated with the behavior of highest priority is selected for expression.  

Postulate B2: Primary Behaviors. Primary behaviors define the vocabulary of 
behavior patterns available to the animat at parturition. These behaviors provide a 
repertoire of activities enabling the animat to survive in its environment until l earning 
processes may provide more effective behaviors. 

Postulate B3: Goal Setting Behaviors.  The ethogram defines the conditions 
under which the animat will convert to goal seeking behavior. Once a goal is set the 
animat is obliged to pursue that goal while there is no primary behavior of higher 
priority. Where no behavior can be selected from the DPM, the animat selects the 
primary behavior of highest priority that is currently active. Behavior selection from 
the DPM resumes once there is any match between the set of active signs and the 
current DPM. 

Interruption of goal directed behavior by a higher priority innate behavior turns the 
animat away from pursuing its current top priority goal. For instance, goal directed 
food-seeking behavior should be interrupted by high priority predator avoidance 
activity. Once the threat has passed the goal directed behavior resumes, although the 
animat’s perceived “place” in the DPM will have shifted as a result of the intervening 
behavior. The structure and corroboration of the DPM may have changed, and it must 
be re-evaluated as behavior reverts to the goal directed form. Where goal seeking 
takes the form of a sustained maintenance of the selected goal state, the selection 
process must re-valence the required goal each time it is satisfied.  

Postulate B4: Default (exploratory) Behaviors. Default Behaviors provide a set 
of behaviors to be pursued by the animat whenever neither a primary nor a goal 
setting behavior is applicable. Typically these default behaviors will t ake the form of 
exploratory actions. Exploratory actions may be either random (trial and error), or 
represent a specific exploration strategy. Selection of this strategy will i mpact the rate 
and order in which the µ-hypothesis creation processes occur (H4). Default behaviors 
have a priority lower than any of the primary (B2) or goal setting (B3) behaviors. The 
provision of some default behaviors is mandatory within the ethogram. 

7    The SRS/E Program Architecture 

Figure one ill ustrates the flow of control within the SRS/E program architecture and 
the interaction between parts. The flow of control forms a non-terminating loop 
incorporating each of the eight steps identified in the figure. The computational effort 



of each cycle is relatively light, each activity being initiated opportunistically 
according to the prevaili ng circumstances. It is the cumulative effect over many 
cycles that gives rise, over time, to a refined set of corroborated µ-hypotheses.  

Step 1 evaluates every sign to create the Sign activation list 
������

 using the current 
status of the animat’s transducers. Step 2 compares past predictions falli ng due at the 
current time with the current activations and updates the corroboration measure of the 
µ-hypotheses responsible for the predictions tested (postulate H3). Step 3a selects a 
default (exploratory, B4) behavior. If an innate behavior is activated (postulate B2, 
step 3b) this will override the default behavior on the basis of priority (B1) at the 
subsumption point (SP1). Step 3c determines the valence status of Signs, and updates 
the Goal List ( � � ), assigning each goal a priority (G2) on the basis of the defined goal 
setting behaviors (B3). Where at least one goal has valence (G1) step 4 is initiated and 
a Dynamic Policy Map constructed (G3). Step 5 applies rule 5 to find an intersection 
between 

������
 and µ-hypotheses valenced by step 4 (postulate G4). The highest priority 

action is passed (via subsumption point SP2) to step 6, which causes the animat’s 
actuators to perform that action. Once an Action has been selected every µ-hypothesis 
in � �  can be evaluated (postulates H1/H2) to determine the predictions to be made, 
which will be evaluated by step 2 in future cycles. Steps 8a, 8b, 8c and 8d implement 
postulates H4-1, H4-2, H5 and H6 respectively. The loop starts again at step 1. 

 

 
Figure One: The SRS/E Evaluation Cycle 



8    Summary and Conclusions 

This paper has developed a minimal set of f ive “rules” of prediction and propagation 
by which an animat may exploit anticipation as a model of intelli gence. The five rules 
are used to place the important attributes of four major learning and behavioral 
schemes into a single anticipatory context and to develop a unified approach to 
modeling them. These are then supported by a larger number of “postulates” , which 
act as a bridge to a realizable model (DEM) and the specific implementation (SRS/E). 
The key strength is the encapsulation of anticipatory prediction into µ-hypotheses, 
self-contained and capable of corroboration without recourse to any outside agency. 
Such µ-hypotheses anticipate what might happen (SS) and predict what can be made 
to happen (SAS), and can be used by the animat to derive appropriate behaviors in its 
environment.  

Parallels with Karl Popper’s “Logic of Scientific Discovery” were identified, and 
these used to inspire the guiding principles for an expectancy based model for animat 
control. The DEM is not, and should not be considered to be, a direct model of the 
Popperian view of scientific discovery. The Popper model is predicated on a level of 
symbolic reasoning far in advance of anything identified within the non-human 
animal kingdom. Nevertheless while the analogy cannot be progressed within the 
animat framework directly, adopting this stance may be thought of as a bridging point 
between the animat world and the explicitly reasoned one. Just as there must, 
presumably, be a bridge between the animal approach to learning and behavior and 
the human one.   
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